- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Wang, Wenting (2)
-
Aldhafeeri, Alwaleed (1)
-
Chin, Hsiao-Hsuan (1)
-
Gong, Mali (1)
-
Hu, Futai (1)
-
Jiang, Xinghe (1)
-
Kwong, Dim-Lee (1)
-
Lo, Guo-Qiang (1)
-
McMillan, James F (1)
-
Melton, Tristan (1)
-
Meng, Yuan (1)
-
Vinod, Abhinav Kumar (1)
-
Vinod, Abhinav_Kumar (1)
-
Wong, Chee Wei (1)
-
Wong, Chee_Wei (1)
-
Yu, Mingbin (1)
-
Zhan, Ziyu (1)
-
Zhou, Heng (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Solitons, the distinct balance between nonlinearity and dispersion, provide a route toward ultrafast electromagnetic pulse shaping, high-harmonic generation, real-time image processing, and RF photonic communications. Here we uniquely explore and observe the spatio-temporal breather dynamics of optical soliton crystals in frequency microcombs, examining spatial breathers, chaos transitions, and dynamical deterministic switching – in nonlinear measurements and theory. To understand the breather solitons, we describe their dynamical routes and two example transitional maps of the ensemble spatial breathers, with and without chaos initiation. We elucidate the physical mechanisms of the breather dynamics in the soliton crystal microcombs, in the interaction plane limit cycles and in the domain-wall understanding with parity symmetry breaking from third-order dispersion. We present maps of the accessible nonlinear regions, the breather frequency dependences on third-order dispersion and avoided-mode crossing strengths, and the transition between the collective breather spatio-temporal states. Our range of measurements matches well with our first-principles theory and nonlinear modeling. To image these soliton ensembles and their breathers, we further constructed panoramic temporal imaging for simultaneous fast- and slow-axis two-dimensional mapping of the breathers. In the phase-differential sampling, we present two-dimensional evolution maps of soliton crystal breathers, including with defects, in both stable breathers and breathers with drift. Our fundamental studies contribute to the understanding of nonlinear dynamics in soliton crystal complexes, their spatio-temporal dependences, and their stability-existence zones.more » « less
-
Wang, Wenting; Aldhafeeri, Alwaleed; Zhou, Heng; Melton, Tristan; Jiang, Xinghe; Vinod, Abhinav_Kumar; Yu, Mingbin; Lo, Guo-Qiang; Kwong, Dim-Lee; Wong, Chee_Wei (, Communications Physics)Abstract Dissipative Kerr soliton microcombs in microresonators have enabled fundamental advances in chip-scale precision metrology, communication, spectroscopy, and parallel signal processing. Here we demonstrate polarization-diverse soliton transitions and deterministic switching dynamics of a self-stabilized microcomb in a strongly-coupled dispersion-managed microresonator driven with a single pump laser. The switching dynamics are induced by the differential thermorefractivity between coupled transverse-magnetic and transverse-electric supermodes during the forward-backward pump detunings. The achieved large soliton existence range and deterministic transitions benefit from the switching dynamics, leading to the cross-polarized soliton microcomb formation when driven in the transverse-magnetic supermode of the single resonator. Secondly, we demonstrate two distinct polarization-diverse soliton formation routes – arising from chaotic or periodically-modulated waveforms via pump power selection. Thirdly, to observe the cross-polarized supermode transition dynamics, we develop a parametric temporal magnifier with picosecond resolution, MHz frame rate and sub-ns temporal windows. We construct picosecond temporal transition portraits in 100-ns recording length of the strongly-coupled solitons, mapping the transitions from multiple soliton molecular states to singlet solitons. This study underpins polarization-diverse soliton microcombs for chip-scale ultrashort pulse generation, supporting applications in frequency and precision metrology, communications, spectroscopy and information processing.more » « less
An official website of the United States government
